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Abstract

Using a combination of data from the College Crisis Initiative (C2i),
the Integrated Postsecondary Data System (IPEDS), and CDC coron-
avirus statistics, this paper investigates the factors which play significant
roles in predicting Fall 2020 mode of instruction in the public, 4-year
sector of higher education. Using principal components analysis (PCA),
I am able to scale down nearly 30 institutional features to a handful of
orthogonal vectors while maintaining relatively high predictive accuracy.
Further, I find that the primary factors in predicting in-person instruc-
tion were state political leaning and intercollegiate athletics.

1 Introduction

Throughout June and July this past summer, there were many uncertainties
surrounding the fall plans of colleges and universities across the United States.
The decisions of how to hold classes across the country were highly varied across
institutions: some indicated they would instruct their classes entirely online,
some decided to hold “hybrid” format classes alternating between in-person
and virtual instruction, while others conducted classes fully in-person. This
project digs into these decisions of various institutions in the public, four-year
or above sector of higher education and uncovers some of the underlying factors
in this decision.

As this is a novel topic, very little research has been conducted on these
decisions, especially in the public sector. A research team out of Davidson
College, the College Crisis Initiative (C2i), has compiled a robust database on
these plans (The College Crisis Initiative, 2020). Chris Marsicano, head of
the College Crisis Initiative, found strong evidence of political control of the
state impacting an institution’s decision on these plans: colleges that reside in
states carried by Trump in 2016 were more likely to conduct in-person classes
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Figure 1: State Political Leaning and Mode of Instruction:
Public, 4-year or above
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during Fall 2020, while blue states were more likely to be online (Amour, 2020).

Ad Astra, a higher-ed consulting firm, also finds heavy evidence of state
politics impacting these reopening plans (Amour, 2020). The firm conducted
a survey on 57 institutions and found the state health department to be the
largest influence in this decision and the governor as the third largest influence.
However, with this small sample and qualitative nature, these results may not
be generalizable to the public higher-education sector as a whole.

The approach for this project differs from that of Marsicano and Ad As-
tra in that I employ a latent factor approach alongside regression analysis and
machine-learning classification to analyze these decisions. Further, my analysis
focuses on the public, 4-year sector of higher education whereas others have
pooled across all sectors and levels. By filtering my data to include only public,
4-year institutions I can investigate the partisan trends on specifically state and
locally controlled institutions.

By conducting this research, I hope to answer the following three questions:

1. Can highly correlated institutional metrics be scaled down to a handful
of eigenvectors?

2. What were the key factors in determining Fall 2020 mode of instruction?
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3. Can Fall 2020 mode of instruction be accurately predicted using a com-
bination of administrative and CDC data?

2 Data

Cross-sectional, institutional-level data are ideal for this research. Luckily,
these data are widely available for researchers and stakeholders. In addition,
including state- and county-level measures of partisanship and coronavirus in-
fection rates can aid in classification and causal inference of institutions’ in-
struction mode. That said, the data for this research come from six key sources,
outlined below:

1. College Crisis Initiative (C2i): The College Crisis Initiative, known
colloquially as “C2i”, has generously produced a dataset on each in-
stitution’s fall reopening plan. This variable can take on several cate-
gories, including “fully online,” “primarily online,” “hybrid,” “primarily
in-person,” and “fully in-person” (The College Crisis Initiative, 2020).
For the sake of this project, I condense these plans into three categories:
online, hybrid, and in-person.

2. The Integrated Postsecondary Data System: Also known as IPEDS,
the Integrated Postsecondary Data System is the primary administrative
data survey used in the higher education sphere (US Department of Edu-
cation, National Center for Education Statistics, 2020a). From this data
source, I am able to import information on several institutional factors,
including enrollment numbers, percentage of students who are full-time,
percentage of students who are from in-state or international, admission
rate, and other institutional characteristics. Unfortunately, the IPEDS
data contains missing values distributed across several variables. As a
result, dropping all institutions with missing values leads to a small sam-
ples size. As such, I impute missing values using a K-nearest neighbors
imputation method to fill in the missing data where needed.1

3. Equity in Athletics Data Analysis: The Equity in Athletics Dis-
closure Act requires all institutions who receive Title IV funding and
participate in intercollegiate athletics to submit data on participation,
revenues, and expenses for each team at their institution, available in
the Equity in Athletics database (US Department of Education, Office
of Postsecondary Education, 2020). The NCAA offers championships in
eight sports during the Fall season: Field Hockey (W), Cross Country
(M/W), Football (M), Soccer (M/W), Volleyball (W), and Water Polo
(M). To analyze the effect of athletics on instruction plans, I incorporated

1The methodology behind this imputation can be found in the Appendix.
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data on revenues and participation at the institutional level for these ath-
letic offerings.

4. National Conference of State Legislatures: Leveraging hypothe-
ses generated from Marsicano, Ad Astra, and others, I hypothesize state
party control to impact institutions’ decisions on how to conduct classes
during the pandemic. The virus became quickly politicized, especially in
the summer-months when these decisions were taking place. President
Trump downplayed the threat of the virus and Republican governors and
state legislatures followed his lead. As such, institutions in Republican
controlled states found a much higher proportion of institutions conduct-
ing classes in-person as opposed to Democratic states (Figure 1). This
data are available at the state-level and merged with each institution,
based on 2020 representation in state legislatures by party (National Con-
ference of State Legislatures, 2020).

5. Cook Partisan Voting Index: The same theoretical framework holds
that republican-leaning states are more likely to be in-person than demo-
cratic leaning states, so the Partisan Voting Index can give a measure
how strongly a state leans towards one party or another (Cook Political
Report, 2017).

6. The New York Times: Based on the research from Ad Astra, it ap-
pears CDC guidance was the driving factor in the decisions of their small
subset of institutions. Counties where the novel coronavirus was hitting
particularly hard during the summer months may have had an effect on
institutional plans for fall 2020. County-level data was downloaded from
the New York Times GitHub repository (New York Times, 2020). A
per-capita measure of daily positive cases in July 2020, the month where
institutions were making these decisions, was calculated.

Together, each of these sources combine into a robust dataset with metrics
available from multiple domains that can explain these instructional decisions
each institution had to face. Summary statistics of variables collected from
each of these sources are displayed in Table 1, which I draw from to develop
my analytical plan.

3 Methodology

Principal Components analysis is an increasingly popular dimension reduction
technique seen in data science circles, yet is rarely seen nowadays in the higher
education literature. PCA, an unsupervised learning technique, is a method
which derives a small, low-dimensional set of features from a large set of vari-
ables (James, Witten, Hastie, & Tibshirani, 2017). The goal of PCA is to
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explain a relatively large portion of the variance in the data, while uncovering
latent attributes formed by a combination of metrics.

In order to run the PCA algorithm, the data must be scaled such that each
variable has a mean of zero and a standard deviation of one. This must be
performed so that each variable contributes equally to the analysis. Next, a
covariance matrix is produced and principal components are generated.

In essence, principal components are linear combinations or mixtures of the
initial variables. These eigenvectors are constructed such that each principal
component is orthogonal (uncorrelated) with the others (Abdi & Williams,
2010). Each principal component represents an attribute, at times latent, that
is comprised of the original variables and weights that correspond with each
variable. PCA loads metrics that are highly correlated with one another into
the same principal component, so there is little need to worry about using cor-
related features in our data.

Aside from dimensionality reduction, principal components can be used
alongside regression analysis to help fight multicollinarity (Alibuhtto & Peiris,
2015). Multicollinarity becomes an issue when two or more covariates are
highly correlated with one another. When this occurs, standard errors are
inflated and causal inference becomes harder to achieve. PCA in regression
analysis has been applied in a variety of empirical research, from predicting
household food waste (Qi & Roe, 2016) to chemometrics (Næs & Martens,
1988).

However, when using PCA alongside a logistic regression, a method of prin-
cipal components regression (PCR), I will forgo a portion of the variance in the
data. Further, each singular feature can no longer be attributed to changes in
the dependent variable. Since some of this interpretability is sacrificed, each
eigenvector will be labeled such that interpretability will be easier to come by.

Aside from Kosar and Scott (2018), who used PCA to examine Carnegie
Classifications in research universities, the technique has yet to be adopted
heavily in the higher education causal inference sphere. However, PCA is highly
utilized in the public health sector for dimensionality reduction with highly
correlated variables (Batis et al., 2016; Schaik, Peng, Ojelabi, & Ling, 2019).
Similarly to Schaik et al. (2019), I will be using the principal components to run
a variety of algorithms to generate feature importance for each eigenvector. The
techniques involved will be a logistic regression and a random forest decision
tree, similar to the analytical methods of Mendez, Buskirk, Lohr, and Haag
(2008) and Wager and Athey (2018).2

2While a multi-class algorithm could be conducted on this data, I choose to split it up
into three separate models so that feature importances can vary across modes of instruction.
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3.1 Analytical Plan

3.1.1 Principal Components Analysis

To answer question (1), I will run a principal components analysis on the data
to scale down several correlated features into a handful of orthogonal vectors.
This will involve standardizing the data, running the principal components
algorithm, and choosing the ideal number of eigenvectors to keep. The vari-
ables mapped to each principal component will be inspected to determine what
attribute each eigenvector represents.

3.1.2 Feature Importances

To evaluate feature importances and answer question (2), I will be investigating
the coefficient estimates of each principal component in the logistic regression.
This can be represented with the following equation, where Y can represent
either in-person instruction, hybrid instruction, or online instruction.

Yi = β0 + β1Eig1i + ...+ β8Eig8i + εi

By standardizing the coefficients in this regression, I can easily compare each
feature’s importance by looking at the magnitude of each coefficient generated
in the logistic classifier. By using PCA alongside a logistic regression, the coef-
ficients cannot be interpreted directly (e.g., analyzing a hypothetical increase
in enrollment with an increased probability of conducting classes online). How-
ever, I can interpret each principal component as singular feature that impacts
mode of instruction.

Also to aid in the determination of feature importance, I will run a random
forest classifier to inspect the key components in this decision. This random
forest model will create an ensemble of decision tree classifiers and generate the
Gini importance, a derivation of the Gini index. This value represents the im-
purity of samples that are split at the parent node of the decision tree (Zhang &
Ma, 2012). Random forests cut down on some of the innate noise found in reg-
ular decision tree classifiers by creating an ensemble of smaller trees. However,
it can be prone to overfitting and typically gives a lower prediction accuracy
compared to other models.

Both of these methods for determining feature importance can be useful for
answering question (2). However, the feature importances from each of these
methods may differ. In the logistic regression, the influence of all eigenvectors
are studied as they work simultaneously, whereas the random forest decision
tree looks at the influence of the variables one at a time. To evaluate the
primary predictors of reopening plans, these feature importances should be
inspected holistically.
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3.1.3 Classification and Evaluation

Lastly, to evaluate these results and determine if Fall 2020 mode of instruction
can be accurately predicted, I will be inspecting the classification power of both
the logistic regression and the random forest calculator by generating a receiver
operating characteristic (ROC) graph and confusion matrices. The ROC curve
will provide insight into predictive capabilities of a certain estimator. The area
under this curve (AUC) represents the probability that the classifier will rank
the “wrong” classification above the “true” classification. As such, this can be
used to evaluate my classification algorithms.

4 Findings

4.1 Principal Components Analysis

To answer question (1), I first conducted principal components analysis on the
data. This was achieved by transforming the dependent variables as scaled and
then running the principal components algorithm. Eight principal components
were chosen to run my analysis.3 The corresponding variables and their re-
spective weights that are mapped to these eigenvectors are displayed in Table
5. I identify the latent attributes associated with each of these eigenvectors as:

1. Institutional Prestige: 150% graduation rate, FY 2018 EOY endow-
ment (logged),4 Open access admissions, percentage of students full-time,
percent of faculty who are full-time, NCAA Division I, in-state tuition
(logged).

2. State Partisanship: Percent Democratic/Republican in State House of
Representatives, Percent Democratic/Republican in State Senate, Cook
Partisan Voting Index.

3. Institutional Testing Capacity: Undergraduate enrollment (logged),
student-faculty ratio, total faculty, 2019 county-level population estimate
(logged), average county-level cases per 100,000 in July.

4. Institutional Diversity: Percentage of undergraduates who were awarded
Pell Grants, percentage of undergraduate who are minority, admission
rate.

5. Institutional Geographic Diversity: Percentage of students in-state,
geographic diversity index.5

3This value was chosen as eight principal components was the lowest number in which
athletic data was successfully pulled into its own eigenvector.

4Variables that were seen to have a high level of skewness were log-transformed before
standardization.

5See Appendix for how this was generated.
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6. Athletics: Number of fall athletes, fall sports revenue (logged), football
offered at institution.

7. State Governorship: Republican/Democratic Governor.

8. Proportion of nontraditional students: Percent of undergraduates
degree-seeking, percent of undergraduates international, percent of un-
dergraduates age 25 or older.

Together, these eight eigenvectors account for 78.73% of the variation in my
data and group correlated features together. As such, I can scale down the
data from 29 features to 8 uncorrelated eigenvectors.

Running principal components analysis on this dataset significantly cut
down on the number of features and correlation within the data. For ex-
ample, Figure 3 displays the correlation matrix of the original, standardized
data alongside the new, transformed data using principal components. The
correlation between each new eigenvector is zero, meaning that there will be
no threat of multicollinarity in the logistic regression model.

As mentioned, PCA groups highly related features together. These vari-
able groupings are intuitive at times (e.g., Fall sports revenue grouped with
Fall athletic participation), yet can require greater inspection at other times.
For example, admissions rate being loaded onto the same principal component
as percent of undergraduates Pell-eligible and percent of students from a mi-
nority background. However, an unfortunate side-effect of stratification in the
higher education sphere is a positive correlation between admissions rates and
proportion of underrepresented students (Hearn, 1984), thus providing insight
unto this grouping.

4.2 Feature Importances

4.2.1 Logistic Regression

To answer question (2), A logistic regression model was run on the complete
dataset to generate coefficients and uncertainty estimates for each eigenvector.
These results are displayed in Table 1. When predicting in-person instruction,
I find that state-partisanship, athletics, and testing capacity yield the greatest
effect on this classification. Each of these coefficients are significant at p < 0.01.
State governorship is also significant at p < 0.05.

On the opposite side of the spectrum, predicting online instruction, state
partisanship is by far the most significant predictor. Testing capacity is also a
highly significant indicator.

4.2.2 Random Forest Classifier

Next, the data was split into a training and test set to generate feature im-
portances using the random forest model. To improve uncertainty and fight
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Table 1: Logistic Regression Results

Dependent variable:

In-person Hybrid Online

(1) (2) (3)

Institutional prestige 0.162 0.0004 −0.039
(0.108) (0.086) (0.083)

State partisanship −0.757∗∗∗ −0.347∗∗∗ 0.823∗∗∗

(0.106) (0.088) (0.090)
Testing capacity −0.280∗∗∗ −0.198∗∗ 0.360∗∗∗

(0.101) (0.087) (0.084)
Diversity 0.161 0.091 −0.194∗∗

(0.098) (0.088) (0.085)
Geographic Diversity 0.008 −0.337∗∗∗ 0.155∗

(0.095) (0.091) (0.084)
Athletics −0.397∗∗∗ 0.206∗∗ 0.035

(0.108) (0.086) (0.083)
Governorship −0.259∗∗ 0.043 0.149∗

(0.101) (0.085) (0.080)
Nontraditional students 0.109 0.141∗ −0.192∗∗

(0.106) (0.086) (0.085)
Constant −1.455∗∗∗ −0.956∗∗∗ −0.166∗∗

(0.108) (0.088) (0.083)

Observations 713 713 713
Log Likelihood −337.527 −408.944 −427.467
Akaike Inf. Crit. 693.053 835.888 872.935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

random sampling errors, this model was run using a Monte Carlo simulation
of 1,000 random samples with each tree representing 5,000 estimators. Next,
the average feature importance was calculated for each random sample.

Using the random forest classifier, I find state legislative makeup, athletics,
and state governorship to be the three most significant indicators for in-person
instruction. For online instruction, the three most significant indicators are
state legislative makeup, institutional testing capacity, and institutional pres-
tige. These results are displayed in Table 2, which displays feature importances
for each eigenvector.

4.3 Evaluation

Lastly, a new logistic model was trained on a subset of units and tested on the
remaining institutions to evaluate predictive accuracy of the algorithm. The
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Table 2: Random Forest Feature Importance

Classification model:

In-person Hybrid Online

(1) (2) (3)

Institutional prestige 0.120 0.120 0.114∗

State partisanship 0.154∗∗∗ 0.130∗ 0.210∗∗∗

Testing capacity 0.114 0.132∗∗∗ 0.123∗∗

Diversity 0.127 0.128 0.113
Geographic Diversity 0.110 0.125 0.108
Athletics 0.131∗∗ 0.123 0.108
Governorship 0.127∗ 0.128 0.113
Nontraditional students 0.109 0.130∗∗ 0.192

# Trees 5000 5000 5000
# Random Samples 1000 1000 1000

Note: ∗Rank #3; ∗∗Rank #2; ∗∗∗Rank #1

same was repeated for the random forest classifier. This evaluation step an-
swers question (3).

Table 3 displays the evaluation measures for my classification algorithms,
with columns (1) and (2) representing the algorithm run with the principal
components and columns (3) and (4) include the algorithms run with the full
set of features.

In the models predicting in-person and online instruction, the logistic model
outperforms that of the random forest. In these models, though the random
forest model yields a higher predictive accuracy, the the area under the ROC
curve of the logistic regression is greater than that of the random forest. Sur-
prisingly, predictive accuracy of hybrid instruction was relatively high.

Lastly, conducting the classification algorithms with only the principal com-
ponents yields similar, if not better, predictive accuracy than the full set of
features. This is likely due to overfitting when using all variables. It appears
that highly correlated institutional metrics can be successfully scaled down to
a handful of eigenvectors while retaining relatively high predictive accuracy,
helping to fight multicollinarity and prevent overfitting.

5 Conclusion

These results highlight the politicization of the novel coronavirus and its impact
in the public, higher education sector. Politics are often overlooked in higher
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Table 3: Evaluation of Classification Algorithms

Principal Components All Features
Logistic Random Forest Logistic Random Forest

Model Measure (1) (2) (3) (4)
Accuracy 0.58 0.79 0.54 0.77
Precision 0.31 0.5 0.27 0.38

In-person Recall 0.83 0.23 0.7 0.17
F-Measure 0.46 0.31 0.39 0.23
ROC AUC 0.67 0.59 0.6 0.55
Accuracy 0.51 0.76 0.51 0.81
Precision 0.28 0.52 0.28 0.71

Hybrid Recall 0.61 0.31 0.58 0.42
F-Measure 0.38 0.39 0.38 0.52
ROC AUC 0.54 0.61 0.53 0.68
Accuracy 0.68 0.66 0.65 0.69
Precision 0.71 0.72 0.69 0.79

Online Recall 0.65 0.67 0.61 0.55
F-Measure 0.68 0.63 0.65 0.65
ROC AUC 0.68 0.66 0.65 0.69

education policy analysis, and this research shows its quantifiable effects on
institutions and students.

While both significant, the magnitude of state partisanship on online in-
struction were greater than that on in-person instruction. This could signal that
democratic-controlled legislatures had a more significant impact in pressuring
institutions to go online than their republican counterparts had in pressuring
institutions to remain open. Further, my results suggest that governorship
plays a less significant role than general state legislative makeup.

In addition, my results contradict the qualitative survey put out by Ad As-
tra where institutions ranked athletics low on their influences to remain open
(Amour, 2020). Perhaps this is a result of their smaller sample size, or maybe
there was a “halo” effect present where institutions were reluctant to signal
that this is a priority. However, this is not surprising, considering the revenue
institutions bring in from Fall athletics. The average institution in my sample
received just over $7 million in Fall athletic revenue, while this number reaches
a max of a whopping $159 million.

I also find evidence that testing capacity goes both ways; institutions with
inadequate testing capacities were more likely to be closed, just as well-equipped
institutions were more likely to remain open. This cannot be said for other sig-
nificant variables, such as athletics or proportion of nontraditional students.
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For example, having low athletic participation did not pressure institutions to
be closed, and having few nontraditional students did not pressure institutions
to remain open.

As for classification and evaluation, it appears that institutional character-
istics can be scaled down to fewer features while retaining predictive accuracy.
That said, PCA may become increasingly popular within the higher education
literature as correlated features such as graduation rate, tuition, and selectivity
can be scaled down to a singular eigenvectors. Researchers and higher educa-
tion policy analysts should look to PCA as an alternative for dimensionality
reduction and as a side-step to multicollinarity.
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6 Implementation Appendix

6.1 Chronicle of Higher Education webscraper

While data on institutional plans had been generously compiled by the College
Crisis Initiative, this data was not available for distribution on their RShiny
dashboard. However, C2i and the Chronicle of Higher Education have a con-
tract with one another, and this data was more easily accessble through the
Chronicle website (The Chronicle of Higher Education, 2020). Within the
HTML source code, the data was stored in a JSON file that could easily be
converted to a dataframe.

6.2 IPEDS UnitID Matching

The data collected from the Chronicle was perfect, except for the fact that
IPEDS UnitIDs were not included and not all institutions names matched up
with those in the IPEDS universe. This makes merging several data sources
challenging. To combat this problem, I created a function using cosine text-
similarity metrics to match an incomplete institution name with the official
institution name in the IPEDS universe and obtain the official UnitID numbers
for merging.

6.3 K-nearest neighbors missing data imputation

When using the PCA algorithm, all units of observation need to have com-
plete data. Otherwise, these units will be dropped. Without the missing-data
imputation, I severely lost institutions cutting down on my sample size. As a
result, I was not able to reach the 500-unit threshold required. To adjust for
this, I conducted a KNN imputation method using Euclidean distance find-
ing the 15 nearest institutions and weighting these values by distance. This
method was chosen as it is the preferred imputation method for the IPEDS sur-
vey (McLaughlin, Howard, & McLaughlin, 2011; US Department of Education,
National Center for Education Statistics, 2020b).

6.4 Geographic Diversity Index

The geographic diversity index (GDI) is derived from the IPEDS Fall Enroll-
ment (EF) survey which includes the state information on the state of residence
of the 2018 first-year class. This variable is calculated using Simpson’s Diversity
Index (Morris et al., 2014):

SDI =
N(N − 1)∑
n(n− 1)

N represents the number of students in the 2018 first-year class, while ni repre-
sents the number of students from a particular state (US Department of Educa-
tion, National Center for Education Statistics, 2020a). This value ranges from
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0 to 1, with 1 being the most geographically diverse. A GDI of zero means that
the institution only serves students from one state, where a GDI of 1 means
that an institution serves an equal number of students across multiple states.

6.5 Variable Transformation

Variables that were seen to have a high skewness were transformed before
conducting PCA. These variables include undergraduate enrollment, tuition,
number of fall athletes, total faculty, fall sports revenue, endowment, and 2019
population estimate.
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7 Tables and Figures

Table 4: Summary Statistics

Statistic Mean St. Dev. Min Max

Open access (Y/N) 0.31 0.46 0 1
Adm. rate 0.80 0.19 0.12 1.00
Undergrad. enrollment 10,283 9,960 271 59,483
% Full-time 0.76 0.19 0.01 1.00
% Degree-seeking 0.65 0.14 0.00 0.98
% International 0.02 0.03 0.00 0.35
% minority 0.47 0.21 0.05 1.00
% Pell 0.36 0.13 0.07 0.80
% age 25+ 0.21 0.16 0.00 0.94
% students in-state 0.84 0.17 0.00 1.00
Geo. Div. Index 0.25 0.22 0.00 1.00
150% Graduation rate 0.48 0.19 0.04 1.00
In-state tuition 8,367 3,602.25 480 23,400
FY2018 Endowment 204,030,698 832,648,299 40,226 12,688,650,784
Student-Faculty Ratio 17.31 3.98 6 34
Total faculty 730.20 709.43 35 5,911
% Faculty full-time 0.57 0.18 0.00 1.00
2019 Population est. 647,175 1,379,660 6,972 10,039,107
Avg. cases per 100k (Jul.) 16.08 15.45 0.38 98.10
% Democrat: Senate 0.46 0.17 0.10 0.96
% Republican: Senate 0.53 0.18 0.00 0.90
% Democrat: House 0.49 0.16 0.15 0.90
% Republican: House 0.50 0.17 0.10 0.84
Democrat Gov. (Y/N) 0.53 0.50 0 1
Republican Gov. (Y/N) 0.47 0.50 0 1
Partisan Voting Index −2.09 9.37 −25 25
Fall sports revenue 7,031,945 18,355,374 0 159,274,447
# Fall athletes 107.58 74.62 1 286
Offer football (Y/N) 0.49 0.49 0 1
NCAA Div-1 (Y/N) 0.32 0.47 0 1

In-person (Y/N) 0.23 0.42 0 1
Online (Y/N) 0.46 0.50 0 1
Hybrid (Y/N) 0.29 0.45 0 1
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Figure 2: Correlation Matrix: All Features
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Figure 3: Correlation Matrix: Principal Components
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Figure 4: Receiver Operating Characteristics

(a) In-person (b) Online

(c) Hybrid
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